Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 191: 38-43, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30562720

RESUMO

Light biotechnology is a promising tool for enhancing recalcitrant compounds biodegradation. Xenobiotics can cause a significant impact on the quality of the results achieved by sewage treatment systems due to their recalcitrance and toxicity. The optimization of bioremediation and industrial processes, aiming to increase efficiency and income is of great value. The aim of this study was to accelerate and optimize the hydrolysis of Remazol Brilliant Blue R by photo stimulating a thermophilic bacterial consortium. Three experimental groups were studied: control group; LED Group and Laser Group. The control group was exposed to the same conditions as the irradiated groups, except exposure to light. The samples were irradiated in Petri dishes with either a Laser device (λ660 nm, CW, θ = 0.04 cm2, 40 mW, 325 s, 13 J/cm2) or by a LED prototype (λ632 ±â€¯2 nm, CW, θ = 0.5 cm2, 145 mW, 44 s, 13 J/cm2). We found that, within 48-h, statistically significant differences were observed between the irradiated and the control groups in the production of RNA, proteins, as well as in the degradation of the RBBR. It is concluded that, both Laser and LED light irradiation caused increased cellular proliferation, protein production and metabolic activity, anticipating and increasing the catabolism of the RBBR. Being the economic viability a predominant aspect for industrial propose our results indicates that photo stimulation is a low-cost booster of bioprocesses.


Assuntos
Antraquinonas/química , Processos Fotoquímicos , Xenobióticos/metabolismo , Antraquinonas/metabolismo , Antraquinonas/efeitos da radiação , Biodegradação Ambiental , Custos e Análise de Custo , Hidrólise , Lasers , Luz , Consórcios Microbianos/efeitos da radiação , Xenobióticos/efeitos da radiação
2.
J Photochem Photobiol B ; 181: 115-121, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29549804

RESUMO

Cellulose has a highly diversified architecture and its enzymatic complexes are studied for achieving an efficient conversion and a high level of efficiency in the deconstruction of cellulolytic biomass into sugars. The aim of this investigation was to evaluate the effect of Laser or LED light in the cellulolytic activity (CMCase) and on the proliferation of the thermophilic microbial consortium used on the degradation process of a lignocellulosic biomass of green coconut shell. The irradiation protocol consisted of six Laser irradiations (λ660 ηm, 40 mW, 270 s, 13 J/cm2) or LED (λ632 ±â€¯2 ηm, 145 mW, 44 s, 13 J/cm2) with 12- h time intervals in nutrient deprivation conditions. After irradiation, the consortium was inoculated into a lignocellulosic biomass (coconut fibers). Non- irradiated consortium was also inoculated and acted as control. Cell proliferation and endoglucanase activity were quantified during the experimental time. Experiments were carried out in triplicate. The results showed an increase of 250 % of thermo-cellulolytic microorganisms for the LED group and 200% for the Laser group when compared to the control. The enzymatic index (red Congo method), showed a statistically significant difference in the process of degradation of the lignocellulosic biomass between the Laser and LED groups compared to the control group [p < 0.0029; p < 0.029, respectively] 48-hs after the inoculation of the microorganisms. At the end of 72-h, this significant difference was maintained for both irradiated groups (p < 0.0212). Based upon the protocol used on the present study, it is possible to concluded that LED light enhanced cell proliferation of the thermophilic microbial consortium while the Laser light increase the enzymatic index of the lignocellulosic biomass of green coconut shell.


Assuntos
Lasers , Luz , Consórcios Microbianos/fisiologia , Proteínas de Bactérias/metabolismo , Biomassa , Celulase/metabolismo , Celulose/química , Celulose/metabolismo , Cocos/metabolismo , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Hidrólise/efeitos da radiação , Microscopia de Fluorescência
3.
J Photochem Photobiol B ; 175: 46-50, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28846934

RESUMO

The objective of this study was to evaluate, in vitro, the bactericidal effect of AmPDT on Staphylococcus aureus (ATCC 25923) using different concentrations (100, 50, 25, 12.5 and 6.25µg/mL) of phenothiazine compound combined with LED light (λ632±2nm) using varied energy densities (12, 9.6, 7.2, 4.8 and 2.4J/cm2). The experiments were carried out in triplicate and the samples were divided into groups: Control, Irradiated (treated only with light at different energy densities), Photosensitizer (treated only in the presence of the dye), AmPDT (treatment with light associated with dye). Counts of the colony forming units and the data obtained were statistically analyzed (ANOVA, Tukey's test, p<0.05). The results showed no difference between irradiated and Control groups. However, using the photosensitizer alone caused significant increased cytotoxicity and consequent reduction on the CFU counts (12.5µg/mL (p<0.001), 25µg/mL, 50µg/mL and 100µg/mL (p<0.0001). When AmPDT was used significant inhibition above 70% were detected for all concentrations of the photosensitize (p<0.0001) except for 6.25µg/mL. The results indicate a dose-response dependent when the photosensitizer is used alone but not for the sole use of the light is used. It is concluded that, a single application of AmPDT, using energy density of 12J/cm2 associated either to 12.5 (81.52%) or 25µg/mL (91.57%) resulted in higher in vitro inhibition of S. aureus.


Assuntos
Anti-Infecciosos/farmacologia , Luz , Fenotiazinas/química , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/química , Corantes/química , Corantes/farmacologia , Testes de Sensibilidade Microbiana , Fenotiazinas/farmacologia , Fármacos Fotossensibilizantes/química , Staphylococcus aureus/efeitos da radiação , Termodinâmica
4.
Lasers Med Sci ; 32(1): 29-34, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27677473

RESUMO

The aim of this study was to evaluate, in vitro, the bactericidal effect of antimicrobial photodynamic therapy (AmPDT) using phenothiazinium dyes (Toluidine Blue O and methylene blue, 1:1) using different concentrations (100, 50, 25, 12.5, and 6.25 µg/mL) associated to red laser with different energy densities (2.4, 4.8, 7.2, 9.6, and 12 J/cm2) on a strain of Staphylococcus aureus (ATCC 23529). On this study, tests were performed in triplicate and the samples were distributed into 36 test groups: Control and bacterial suspensions were irradiated with the different energy densities, respectively, in the absence of photosensitizer, bacterial suspensions were irradiated with the laser in the different concentrations of the photosensitizer, and finally bacterial suspensions only in the presence of phenothiazinium dye. The pre-irradiation time was 5 min. Therefore, we analyzed the potential of the AmPDT by counting colony-forming units. The logarithm of CFU/mL (log10 CFU/mL) was calculated and the data was analyzed statistically (ANOVA, Tukey's test, p < 0.05). The results showed that the association 50 and 100 µg/mL with 12 J/cm2 showed the highest percentage of inhibition (100 %). Based upon the present results, it may be concluded that the AmPDT was able to enhance the antimicrobial effect of phenothiazines and both concentration of the compound and energy density are important factors for greater effectiveness of therapy.


Assuntos
Anti-Infecciosos/farmacologia , Lasers , Fenotiazinas/farmacologia , Fotoquimioterapia , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento
5.
Lasers Med Sci ; 28(3): 799-806, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22814898

RESUMO

Iron deficiency impairs the formation of hemoglobin, red blood cells, as well the transport of oxygen. The wound healing process involves numerous functions, many of which are dependent on the presence of oxygen. Laser has been shown to improve angiogenesis, increases blood supply, cell proliferation and function. We aimed to study the effect of λ660 nm laser and λ700 nm light-emitting diode (LED) on fibroblastic proliferation on cutaneous wounds on iron-deficient rodents. Induction of iron anemia was carried out by feeding 105 newborn rats with a special iron-free diet. A 1 × 1 cm wound was created on the dorsum of each animal that were randomly distributed into seven groups: I, control anemic; II, anemic no treatment; III, anemic+L; IV, anemic+LED; V, healthy no treatment; VI, healthy+laser; VII, healthy+LED (n=15 each). Phototherapy was carried out using either a diode laser (λ660 nm, 40 mW, 10 J/cm(2)) or a prototype LED device (λ700 ± 20 nm, 15 mW, 10 J/cm(2)). Treatment started immediately after surgery and was repeated at 48-h interval during 7, 14, and 21 days. After animal death, specimens were taken, routinely processed, cut, stained with hematoxylin-eosin, and underwent histological analysis and fibroblast counting. Significant difference between healthy and anemic subjects on regards the number of fibroblast between treatments was seen (p<0.008, p<0.001). On healthy animals, significant higher count was seen when laser was used (p<0.008). Anemic subjects irradiated with LED showed significantly higher count (p<0.001). It is concluded that the use of LED light caused a significant positive biomodulation of fibroblastic proliferation on anemic animals and laser was more effective on increasing proliferation on non-anemics.


Assuntos
Terapia com Luz de Baixa Intensidade , Fototerapia , Pele/lesões , Pele/efeitos da radiação , Cicatrização/efeitos da radiação , Anemia Ferropriva/patologia , Anemia Ferropriva/radioterapia , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Luz , Masculino , Ratos , Ratos Wistar , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...